Evolution and implications of the COVID-19 pandemic in main tourism municipalities of Mexico
DOI:
https://doi.org/10.47557/YOEK2594Keywords:
COVID-19, mexican tourism municipalities, epidemic spreadAbstract
In order to explore the relationships between the characteristics of Mexico's tourism municipalities and the evolution of the spread of the COVID-19, Bayesian regression and cluster analyzes were carried out on available and publicly accessible databases. It was confirmed that during the first phases of the epidemic, tourism municipalities with greater infrastructure, and therefore with greater tourist movement, resulted in a significative number of cases of infected and deaths, while in later stages, the tourist movement lost relevance to explain them. The differences in the spread between clusters identified by phase in the evolution of the pandemic are described. Conclusions, implications and future lines of research are included.
Downloads
References
Bavel, J. J. V., Baicker, K., Boggio, P. S., Capraro, V., Cichocka, A., Cikara, M. y Willer, R. (2020). Using social and behavioural science to support COVID-19 pandemic response. Nature Human Behaviour, 4. https://doi.org/10.1038/s41562-020-0884-z
Bell, C. y Lewis, M. (2011). Economic implications of epidemics old and new. SSRN Electronic Journal, 54. https://doi.org/10.2139/ssrn.997387
Benjamin, S., Dillette, A. y Alderman, D. H. (2020). “We can’t return to normal”: Committing to tourism equity in the post-pandemic age. Tourism Geographies, 0(0), 1–8. https://doi.org/10.1080/14616688.2020.1759130
Cejudo, D. J. (2020). Entre políticos y científicos. La Influenza A (H1N1) en México, 2009. En H. Casanova (Ed.), Educación y pandemia. Una visión académica. Universidad Nacional Autónoma de México. http://www.iisue.unam.mx/nosotros/covid/educacion-y-pandemia
Centro Nacional de Programas Preventivos y Control de Enfermedades (Cenaprece). (2012). Plan nacional para la preparación y respuesta ante la intensificación de la influenza estacional o ante una pandemia de influenza. Secretaría de Salud. http://www.salud.gob.mx/unidades/cdi/documentos/PRESPlanPandemiaInfluenza.pdf
Clyde, M. (2020) BAS: Bayesian variable selection and model averaging using Bayesian Adaptive Sampling. R package version 1.5.5
Consejo Nacional de Población (Conapo). (2018). Bases de datos de proyecciones de la población de México y de las entidades federativas, 2016-2050. Consultada el 19 de mayo de 2020. https://bit.ly/33e35mP
Diario Oficial de la Federación de México (2020, 14 mayo). Acuerdo por el que se establece una estrategia para la reapertura de las actividades sociales, educativas y económicas, así como un sistema de semáforo por regiones para evaluar semanalmente el riesgo epidemiológico relacionado con la reapertura de actividades cada entidad federativa, así como se establecen acciones extraordinarias. Secretaría de Salud. https://dof.gob.mx/nota_detalle.php?codigo=5593313&fecha=14/05/2020
Driver, C. R., Valway, S. E., Onorato, I. M., Castro, K. G. y Morgan, W. M. (1994). Transmission of mycobacterium tuberculosis associated with air travel. JAMA: The Journal of the American Medical Association, 272(13), 1031–1035. https://doi.org/10.1001/jama.1994.03520130069035
Epstein, J. M., Goedecke, D. M., Yu, F., Morris, R. J., Wagener, D. K. y Bobashev, G. V. (2007). Controlling pandemic flu: The value of international air travel restrictions. PLoS ONE, 2(5). https://doi.org/10.1371/journal.pone.0000401
George, A. y Richards, D. (2012). Tourism in Trinidad and Tobago: The evolving attitudes and behaviors and its implications in an era of HIV/AIDS. Études Caribéennes, 19, 0–14. https://doi.org/10.4000/etudescaribeennes.5314
Gibbons, J. M., Cox, G. M., Wood, A. T. A., Craigon, J., Ramsden, S. J., Tarsitano, D. y Crout, N. M. J. (2008). Applying Bayesian model averaging to mechanistic models: An example and comparison of methods. Environmental Modelling and Software, 23(8), 973–985. https://doi.org/10.1016/j.envsoft.2007.11.008
Grais, R. F., Ellis, J. H. y Glass, G. E. (2003). Assessing the impact of airline travel on the geographic spread of pandemic influenza. European Journal of Epidemiology, 18(11), 1065–1072. https://doi.org/10.1023/A:1026140019146
Gössling, S., Scott, D. y Hall, C. M. (2020). Pandemics, tourism and global change: A rapid assessment of COVID-19. Journal of Sustainable Tourism, 0(0), 1–20. https://doi.org/10.1080/09669582.2020.1758708
Instituto Nacional de Estadística y Geografía (INEGI). (2015). Encuesta Intercensal 2015. Consultada el 19 de mayo de 2020. http://bitly.ws/9C8G
Kuo, H. I., Chen, C. C., Tseng, W. C., Ju, L. F. y Huang, B. W. (2008). Assessing impacts of SARS and Avian Flu on international tourism demand to Asia. Tourism Management, 29(5), 917–928. https://doi.org/10.1016/j.tourman.2007.10.006
López-Gatell, H. (2020, 12 de marzo). Conferencia de prensa de la Secretaría de Salud.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Tan, W. (2020). Genomic characterization and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
Mao, C. K., Ding, C. G. y Lee, H. Y. (2010). Post-SARS tourist arrival recovery patterns: An analysis based on a catastrophe theory. Tourism Management, 31(6), 855–861. https://doi.org/10.1016/j.tourman.2009.09.003
Oehmichen-Bazán, C. y París Pombo, M. (2010). El miedo ante el riesgo global: Apuntes sobre la emergencia del virus A/H1N1 y el turismo. Revista Nuevas Tendencias en Antropología, 1, 161–185. https://bit.ly/2RcGyBk
Organización Mundial de la Salud (OMS). (2009). Preparación para una pandemia de influenza. Documento de Orientación de la OMS. http://www.who.int/csr/swine_flu/Preparacion_Pand_ESP.pdf
Organización Mundial de la Salud (OMS). (2020). Brote de enfermedad por coronavirus (COVID-19). https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019.
Organización Mundial del Turismo (OMT). (2009). Travel and tourism under pandemic conditions. Review and preparation exercise. https://doi.org/10.18111/9789284413317
Orozco-Núñez, E., Alcalde-Rabanal, J. E., Ruiz-Larios, J. A., Sucilla-Pérez, H. y García-Cerde, R. (2015). Mapeo político de la discriminación y homofobia asociadas con la epidemia de VIH en México TT - Discrimination and homophobia associated to the human immunodeficiency virus epidemic. Salud Pública de México, 57(3), s190–s196.
Paraskevis, D., Kostaki, E. G., Magiorkinis, G., Panayiotakopoulos, G., Sourvinos, G. y Tsiodras, S. (2020). Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution, 79, 104212. https://doi.org/10.1016/j.meegid.2020.104212
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25(1), 111–163. https://doi.org/10.2307/271063
Rassy, D. y Smith, R. D. (2013). The economic impact of H1N1 on Mexico’s tourist and pork sectors. Health Economics, 22(7), 824–834. https://doi.org/10.1002/hec.2862
Remuzzi, A. y Remuzzi, G. (2020). COVID-19 and Italy: What next? The Lancet, 395(10231), 1225–1228. https://doi.org/10.1016/S0140-6736(20)30627-9
Ridenhour, B., Kowalik, J. M. y Shay, D. K. (2018). Unraveling R 0: Considerations for public health applications. American Journal of Public Health, 108(S6), S445–S454. https://doi.org/10.2105/AJPH.2013.301704r
Scrucca, L., Fop, M., Murphy, T. B. y Raftery, A. E. (2016). Mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1), 289-317. https://bit.ly/3ifPYHS
Secretaría de Salud. (2020). Datos abiertos de México - Información referente a casos COVID-19 en México. https://bit.ly/2R9Rn6V
Secretaría de Turismo (Sectur). (2019). Pueblos Mágicos de México. https://www.gob.mx/sectur/articulos/pueblos-magicos-206528
Secretaría de Turismo (Sectur). (2020). Datatur3 - Actividad Hotelera. https://www.datatur.sectur.gob.mx/SitePages/ActividadHotelera.aspx
Teitler-Regev, S., Shahrabani, S. y Goziker, O. (2013). The effect of economic crises, epidemics and terrorism on tourism. International Journal of Business & Economics, 5(2), 19–32.
Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychology, 44(1), 92–107. https://doi.org/10.1006/jmps.1999.1278
Wilson, M. E. (1995). Travel and the emergence of infectious diseases. Emerging Infectious Diseases, 1(2), 39–46. https://wwwnc.cdc.gov/eid/article/1/2/95-0201_article
Wilson, M. E. (2020). What goes on board aircraft? Passengers include Aedes, Anopheles, 2019-nCoV, dengue, Salmonella, Zika et al. Travel Medicine and Infectious Disease, 33, 101572. https://doi.org/10.1016/j.tmaid.2020.101572
Yang, Y., Zhang, H. y Chen, X. (2020). Coronavirus pandemic and tourism: Dynamic stochastic general equilibrium modeling of infectious disease outbreak. Annals of Tourism Research. https://doi.org/10.1016/j.annals.2020.102913
Zhang, T., Wu, Q. y Zhang, Z. (2020). Probable pangolin origin of SARS-COV-2 associated with the COVID-19 outbreak. Current Biology, 30(7), 1346-1351. https://doi.org/10.1016/j.cub.2020.03.022
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Alfonso González Damián
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All contents of Dimensiones Turísticas are published under the Attribution/Attribution - non-commercial - sharealike 4.0 International license, and can be used free of charge for non-commercial purposes, giving credit to the authors and the Dimensiones Turísticas journal. Articles before January-December 2023 were published under Attribution/Attribution - Non-Commercial - NoDerivatives 4.0 International License.