Evolution and implications of the COVID-19 pandemic in main tourism municipalities of Mexico

Authors

DOI:

https://doi.org/10.47557/YOEK2594

Keywords:

COVID-19, mexican tourism municipalities, epidemic spread

Abstract

In order to explore the relationships between the characteristics of Mexico's tourism municipalities and the evolution of the spread of the COVID-19, Bayesian regression and cluster analyzes were carried out on available and publicly accessible databases. It was confirmed that during the first phases of the epidemic, tourism municipalities with greater infrastructure, and therefore with greater tourist movement, resulted in a significative number of cases of infected and deaths, while in later stages, the tourist movement lost relevance to explain them. The differences in the spread between clusters identified by phase in the evolution of the pandemic are described. Conclusions, implications and future lines of research are included.

Downloads

Download data is not yet available.

References

Bavel, J. J. V., Baicker, K., Boggio, P. S., Capraro, V., Cichocka, A., Cikara, M. y Willer, R. (2020). Using social and behavioural science to support COVID-19 pandemic response. Nature Human Behaviour, 4. https://doi.org/10.1038/s41562-020-0884-z

Bell, C. y Lewis, M. (2011). Economic implications of epidemics old and new. SSRN Electronic Journal, 54. https://doi.org/10.2139/ssrn.997387

Benjamin, S., Dillette, A. y Alderman, D. H. (2020). “We can’t return to normal”: Committing to tourism equity in the post-pandemic age. Tourism Geographies, 0(0), 1–8. https://doi.org/10.1080/14616688.2020.1759130

Cejudo, D. J. (2020). Entre políticos y científicos. La Influenza A (H1N1) en México, 2009. En H. Casanova (Ed.), Educación y pandemia. Una visión académica. Universidad Nacional Autónoma de México. http://www.iisue.unam.mx/nosotros/covid/educacion-y-pandemia

Centro Nacional de Programas Preventivos y Control de Enfermedades (Cenaprece). (2012). Plan nacional para la preparación y respuesta ante la intensificación de la influenza estacional o ante una pandemia de influenza. Secretaría de Salud. http://www.salud.gob.mx/unidades/cdi/documentos/PRESPlanPandemiaInfluenza.pdf

Clyde, M. (2020) BAS: Bayesian variable selection and model averaging using Bayesian Adaptive Sampling. R package version 1.5.5

Consejo Nacional de Población (Conapo). (2018). Bases de datos de proyecciones de la población de México y de las entidades federativas, 2016-2050. Consultada el 19 de mayo de 2020. https://bit.ly/33e35mP

Diario Oficial de la Federación de México (2020, 14 mayo). Acuerdo por el que se establece una estrategia para la reapertura de las actividades sociales, educativas y económicas, así como un sistema de semáforo por regiones para evaluar semanalmente el riesgo epidemiológico relacionado con la reapertura de actividades cada entidad federativa, así como se establecen acciones extraordinarias. Secretaría de Salud. https://dof.gob.mx/nota_detalle.php?codigo=5593313&fecha=14/05/2020

Driver, C. R., Valway, S. E., Onorato, I. M., Castro, K. G. y Morgan, W. M. (1994). Transmission of mycobacterium tuberculosis associated with air travel. JAMA: The Journal of the American Medical Association, 272(13), 1031–1035. https://doi.org/10.1001/jama.1994.03520130069035

Epstein, J. M., Goedecke, D. M., Yu, F., Morris, R. J., Wagener, D. K. y Bobashev, G. V. (2007). Controlling pandemic flu: The value of international air travel restrictions. PLoS ONE, 2(5). https://doi.org/10.1371/journal.pone.0000401

George, A. y Richards, D. (2012). Tourism in Trinidad and Tobago: The evolving attitudes and behaviors and its implications in an era of HIV/AIDS. Études Caribéennes, 19, 0–14. https://doi.org/10.4000/etudescaribeennes.5314

Gibbons, J. M., Cox, G. M., Wood, A. T. A., Craigon, J., Ramsden, S. J., Tarsitano, D. y Crout, N. M. J. (2008). Applying Bayesian model averaging to mechanistic models: An example and comparison of methods. Environmental Modelling and Software, 23(8), 973–985. https://doi.org/10.1016/j.envsoft.2007.11.008

Grais, R. F., Ellis, J. H. y Glass, G. E. (2003). Assessing the impact of airline travel on the geographic spread of pandemic influenza. European Journal of Epidemiology, 18(11), 1065–1072. https://doi.org/10.1023/A:1026140019146

Gössling, S., Scott, D. y Hall, C. M. (2020). Pandemics, tourism and global change: A rapid assessment of COVID-19. Journal of Sustainable Tourism, 0(0), 1–20. https://doi.org/10.1080/09669582.2020.1758708

Instituto Nacional de Estadística y Geografía (INEGI). (2015). Encuesta Intercensal 2015. Consultada el 19 de mayo de 2020. http://bitly.ws/9C8G

Kuo, H. I., Chen, C. C., Tseng, W. C., Ju, L. F. y Huang, B. W. (2008). Assessing impacts of SARS and Avian Flu on international tourism demand to Asia. Tourism Management, 29(5), 917–928. https://doi.org/10.1016/j.tourman.2007.10.006

López-Gatell, H. (2020, 12 de marzo). Conferencia de prensa de la Secretaría de Salud.

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Tan, W. (2020). Genomic characterization and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8

Mao, C. K., Ding, C. G. y Lee, H. Y. (2010). Post-SARS tourist arrival recovery patterns: An analysis based on a catastrophe theory. Tourism Management, 31(6), 855–861. https://doi.org/10.1016/j.tourman.2009.09.003

Oehmichen-Bazán, C. y París Pombo, M. (2010). El miedo ante el riesgo global: Apuntes sobre la emergencia del virus A/H1N1 y el turismo. Revista Nuevas Tendencias en Antropología, 1, 161–185. https://bit.ly/2RcGyBk

Organización Mundial de la Salud (OMS). (2009). Preparación para una pandemia de influenza. Documento de Orientación de la OMS. http://www.who.int/csr/swine_flu/Preparacion_Pand_ESP.pdf

Organización Mundial de la Salud (OMS). (2020). Brote de enfermedad por coronavirus (COVID-19). https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019.

Organización Mundial del Turismo (OMT). (2009). Travel and tourism under pandemic conditions. Review and preparation exercise. https://doi.org/10.18111/9789284413317

Orozco-Núñez, E., Alcalde-Rabanal, J. E., Ruiz-Larios, J. A., Sucilla-Pérez, H. y García-Cerde, R. (2015). Mapeo político de la discriminación y homofobia asociadas con la epidemia de VIH en México TT - Discrimination and homophobia associated to the human immunodeficiency virus epidemic. Salud Pública de México, 57(3), s190–s196.

Paraskevis, D., Kostaki, E. G., Magiorkinis, G., Panayiotakopoulos, G., Sourvinos, G. y Tsiodras, S. (2020). Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution, 79, 104212. https://doi.org/10.1016/j.meegid.2020.104212

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.

Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25(1), 111–163. https://doi.org/10.2307/271063

Rassy, D. y Smith, R. D. (2013). The economic impact of H1N1 on Mexico’s tourist and pork sectors. Health Economics, 22(7), 824–834. https://doi.org/10.1002/hec.2862

Remuzzi, A. y Remuzzi, G. (2020). COVID-19 and Italy: What next? The Lancet, 395(10231), 1225–1228. https://doi.org/10.1016/S0140-6736(20)30627-9

Ridenhour, B., Kowalik, J. M. y Shay, D. K. (2018). Unraveling R 0: Considerations for public health applications. American Journal of Public Health, 108(S6), S445–S454. https://doi.org/10.2105/AJPH.2013.301704r

Scrucca, L., Fop, M., Murphy, T. B. y Raftery, A. E. (2016). Mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1), 289-317. https://bit.ly/3ifPYHS

Secretaría de Salud. (2020). Datos abiertos de México - Información referente a casos COVID-19 en México. https://bit.ly/2R9Rn6V

Secretaría de Turismo (Sectur). (2019). Pueblos Mágicos de México. https://www.gob.mx/sectur/articulos/pueblos-magicos-206528

Secretaría de Turismo (Sectur). (2020). Datatur3 - Actividad Hotelera. https://www.datatur.sectur.gob.mx/SitePages/ActividadHotelera.aspx

Teitler-Regev, S., Shahrabani, S. y Goziker, O. (2013). The effect of economic crises, epidemics and terrorism on tourism. International Journal of Business & Economics, 5(2), 19–32.

Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychology, 44(1), 92–107. https://doi.org/10.1006/jmps.1999.1278

Wilson, M. E. (1995). Travel and the emergence of infectious diseases. Emerging Infectious Diseases, 1(2), 39–46. https://wwwnc.cdc.gov/eid/article/1/2/95-0201_article

Wilson, M. E. (2020). What goes on board aircraft? Passengers include Aedes, Anopheles, 2019-nCoV, dengue, Salmonella, Zika et al. Travel Medicine and Infectious Disease, 33, 101572. https://doi.org/10.1016/j.tmaid.2020.101572

Yang, Y., Zhang, H. y Chen, X. (2020). Coronavirus pandemic and tourism: Dynamic stochastic general equilibrium modeling of infectious disease outbreak. Annals of Tourism Research. https://doi.org/10.1016/j.annals.2020.102913

Zhang, T., Wu, Q. y Zhang, Z. (2020). Probable pangolin origin of SARS-COV-2 associated with the COVID-19 outbreak. Current Biology, 30(7), 1346-1351. https://doi.org/10.1016/j.cub.2020.03.022

Published

2020-09-27

How to Cite

González Damián, A. (2020). Evolution and implications of the COVID-19 pandemic in main tourism municipalities of Mexico . Dimensiones turísticas, 4, 37-68. https://doi.org/10.47557/YOEK2594